PushDown Automata

By Dr. Fathy

What is a stack?

- A stack is a Last In First Out data structure where I only have access to the last element inserted in the stack.
- In order to access other elements I have to remove those that are on top one by one.

What is a PDA?

- A PDA is an enhanced finite automaton that also contains an **infinite** stack.
- The transitions in a PDA are of the form

$$a, x \rightarrow y$$

meaning that if you see an a in the input string and the stack contains the symbol x on top then you remove the x and add a y.

 The stack gives us extra power to recognize non-regular languages.

 Transitions of the form a, x → y require that the next input symbol should be a and the top stack symbol should be x.

• Transitions of the form ε , $x \longrightarrow y$ require that the top stack symbol is x.

• Transitions of the form $a, \varepsilon \rightarrow y$ require that the next input symbol is a.

• Transitions of the form ε , $\varepsilon \longrightarrow y$ can be followed without restrictions.

PDA Accept – Reject Status

- The PDA accepts when there exists a computation path such that:
 - The computation path ends in an accept state
 - All the input is consumed
 - (no requirement for the stack)
- The PDA rejects when all the paths:
 - Either end in a non-accepting state
 - Or are incomplete (meaning that at some point there is no possible transition under the current input and stack symbols)

A PDA for $\{a^nb^n : n \ge 0\}$

- We usually use the stack for counting.
- For this language for example, you first insert all the as in the stack until you start seeing bs.
- When you see the first b start removing as from the stack.
- When you have consumed the whole string you check the stack: if it's empty then this means that the number of as equals the number of bs.

Is the stack empty?

How can you check if the stack is empty?

- What we usually do is to place a special symbol (for example a \$) at the bottom of the stack.
- Whenever we find the \$ again we know that we reached the end of the stack.
- In order to accept a string there is no need for the stack to be empty.

Stack push and pop in PDA

• a, $\epsilon \rightarrow t$

when you see an a in the input push t on the stack

• a, b $\rightarrow \epsilon$

when you see an a in the input and b is on the top of the stack, pop b out.

A PDA for $\{a^nb^n : n \ge 0\}$

abb X

PDA formally

- A PDA is a sextuple (Q, Σ , Γ , δ , q_0 , F), where:
 - Q is the set of states
 - $-\Sigma$ is the input alphabet
 - Γ is the alphabet for the stack
 - $-\delta$ is the transition function
 - $-q_0$ is the start state
 - F is the set of accepting states

About Γ : The stack alphabet can contain any symbol you want. It can be completely disjoint from Σ .

L₍₎: proper opening and closing parenthesis

L₍₎: proper opening and closing parenthesis

Try it yourself

Create a PDA for the language:

 $L_{=} = \{w : w \text{ contains an equal number of 0s and 1s}\}$

L₌: equal number of 0s and 1s

L₌: equal number of 0s and 1s

NPDA for this language

