PushDown Automata

By Dr. Fathy



What is a stack?

e A stackis a Last In First Out data structure

where | only have access to the last element
inserted in the stack.

 |In order to access other elements | have to
remove those that are on top one by one.
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What is a PDA?

e A PDA is an enhanced finite automaton that
also contains an infinite stack.

 The transitions in a PDA are of the form
a,X—Yy

meaning that if you see an a in the input string
and the stack contains the symbol x on top
then you remove the x and add a .

* The stack gives us extra power to recognize
non-regular languages.



Transitions

* Transitions of the form a, x — y require that
the next input symbol should be a and the top
stack symbol should be x.
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Transitions

* Transitions of the form €, x — y require that
the top stack symbol is x.

g, X— £,X—
@ =5() (D) =5@)
X ...abb... - Y ...abb...
e e
Stack Input Stack

Input




Transitions

* Transitions of the form a, € — y require that
the next input symbol is a.
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Transitions

* Transitions of the form g, € — y can be
followed without restrictions.
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PDA Accept — Reject Status

* The PDA accepts when there exists a
computation path such that:
— The computation path ends in an accept state
— All the input is consumed
— (no requirement for the stack)

 The PDA rejects when all the paths:

— Either end in a non-accepting state

— Or are incomplete (meaning that at some point
there is no possible transition under the current
input and stack symbols)



A PDA for {a"b" : n 2 0}

We usually use the stack for counting.

For this language for example, you first insert
all the as in the stack until you start seeing bs .

When you see the first b start removing as
from the stack.

When you have consumed the whole string
you check the stack: if it’s empty then this
means that the number of as equals the
number of bs.



Is the stack empty?

How can you check if the stack is empty?

 What we usually do is to place a special
symbol (for example a S) at the bottom of the
stack.

* Whenever we find the S again we know that
we reached the end of the stack.

* In order to accept a string there is no need
for the stack to be empty.



Stack push and pop in PDA

e 3,e —t

when you see an a in the input push t on the
stack
e a,b—¢

when you see an a in the input and b is on the
top of the stack, pop b out.



A
PDA for {a"b" : n 2
: n = 0}

>/
&

E,E—>$-@\‘P

b, x — ¢

< d; ?)
/,%
o




Visualization of {a"b":n > 0}
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Visualization of {a"b":n > 0}
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Visualization of {a"b":n > 0}
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Visualization of {a"b":n > 0}
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Visualization of {a"b":n > 0}
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Visualization of {a"b":n > 0}
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PDA formally

 APDAs asextuple (Q, 2,T, 6, qq F), where:
— Q. is the set of states
— 2 is the input alphabet
— [is the alphabet for the stack
— & is the transition function
— Qg is the start state
— F is the set of accepting states

About I": The stack alphabet can contain any
symbol you want. It can be completely disjoint
from 2.



L, : proper opening and closing
parenthesis



L, : proper opening and closing
parenthesis

g, €—8$

g,S—¢
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Try it yourself

* Create a PDA for the language:

L_ = {w : w contains an equal number of 0Os and 1s}



L_ : equal number of Os and 1s




L_ : equal number of Os and 1s

NPDA for this language

e €% 0,e =y

0, x— €

1, y—¢€
gS—¢




